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SUMMARY 
This progress report outlines several significant achievements in the ODELIA D1.4 phase.  

 

INTRODUCTION  
 

The use of artificial intelligence in medicine is progressing, emphasising the importance of accurate 

machine learning (ML) models. However, challenges arise in sharing extensive patient data, especially 

across international borders. Federated learning (FL) addresses this by training ML models 

independently at different sites without data sharing. Yet, FL requires a central coordinator, 

concentrating control. Swarm learning (SL), a recent development, uses blockchain-based 

communication, eliminating the need for a leading participant node and allowing dynamic onboarding 

and dropout of institutions. In this resource, we elucidate SL principles, detailing its architecture and 

interactions. A step-by-step manual for integrating SL into workflows, illustrated with breast cancer 

detection on MRI data using Hewlett Packard Enterprise (HPE) Swarm Learning, is provided. Over the 

next five years, increasing breast cancer screening with MRI will challenge radiologists, but AI offers a 

solution. Our research combines weakly supervised learning, bypassing detailed annotations, with 

swarm learning (SL), enabling local AI model training without centralised data sharing. Using a dataset 

of 922 MRI exams from the USA, we validated models on 427 exams from Germany. Benchmarking 

various weakly supervised 2D and 3D DL methods, we identified 3D-ResNet-101 as superior. 

Combining weakly supervised tumour detection with SL involving three computer nodes showcased 

matching accuracy to centralised training, emphasising the potential of this approach to leverage 

larger datasets for medical AI without detailed annotations and data sharing constraints. 

 

TANGIBLE DEMONSTRATION CASE: AUTOMATIC BREAST CANCER 

DETECTION ON MRI DATA 
 

The introduction of new breast cancer screening recommendations, particularly the endorsement of 

MRI as a screening method, is reshaping diagnostic practices in Europe and the United States [1,2]. 

Unlike previous guidelines that primarily relied on x-ray mammography [3,4], the evolving landscape, 

as outlined in the recent EUSOBI guideline [1], emphasises the use of MRI, especially for women 

with dense breast tissue. This shift necessitates a significant scaling. 

 

PREREQUISITES 
These are the software and hardware prerequisites for running the  

Hardware Recommendations 

• 64 GB of RAM (32 GB is the absolute minimum) 

• 16 CPU cores (8 is the absolute minimum) 

• an NVIDIA GPU with 48 GB of RAM (24 is the minimum) 

• 8 TB of Storage (4 TB is the absolute minimum) 

• We deliberately want to show that we can work with lightweight hardware like this. Here are 

three quotes for systems like this for less than 10k EUR (Lambda, Dell Precision, and Dell 

Alienware) 

• Typical installation time can take 30 minutes to build up the necessary dependencies and 

another 1 hour to build up the environment for running demo experiments. 
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Operating System 

• Ubuntu 20.04 LTS 

o We have tested the Swarm Learning Environment on [Ubuntu 20.04 LTS, Ubuntu 

22.04.2 LTS, Ubuntu 20.04.5 LTS] and they work fine. 

o Any experimental release of Ubuntu greater than LTS 20.04 MAY result in 

unsuccessful swop node running. 

o It also works on WSL2(Ubuntu 20.04.2 LTS) on Windows systems. WSL1 may have 

some issues with the docker service. 

PREPROCESSING WORKFLOW 
 

The study applied a uniform preprocessing pipeline to all datasets, involving two key steps. Initially, 

left and right breast volumes were individually cropped to align with the model's single breast volume 

processing. Each breast volume received a global label indicating malignancy (yes/no) from the Duke 

or UKA datasets. Following this, the data underwent transformation from DICOM to NIFTI files, with 

subsequent resampling to achieve a consistent resolution of 256 x 256 x 32 voxels. The processed 

sequence facilitated the computation of a subtraction image (difference between first post-contrast 

and pre-contrast T1-weighted images). This pre-processed data was then employed to train a deep 

learning model for binary classification of the volume into two classes: malignancy, yes or no. This 

simplification allows for the application of various weakly supervised prediction methods in analysing 

the problem of tumour detection. 

 

 

DATA PRE-PROCESSING STEP-BY-STEP GUIDE 
 
The steps taken for data preprocessing can be divided into three parts. 

1. Downloading the DUKE Dataset: The researcher downloads the dataset from the TCIA (The 
Cancer Imaging Archive) website. The dataset is then stored in the 'dataset_raw' folder on the 
local file system. 

2. Running the Data Preparation Script: The researcher executes the data preparation script. This 
script converts the DICOM files into NIFTI format, which are then stored on the local file system. 
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3. Running the Crop or Pad Script: Finally, the researcher runs the crop or pad script. This script 
processes the breast images by splitting them into left and right sides and resampling them to a 
uniform shape. The processed images are then ready to be used as input for the different 
models. 

 

 
 

DETAILED PRE-PROCESSING WORKFLOW DESCRIPTION 
 

Data Preparation 
 

1. Metadata Extraction: 

• A predefined list of DICOM metadata keys (metadatakeys) is used to extract relevant 
information from the DICOM files. This metadata is later saved as a JSON file. 

2. Mapping File Paths to Sequence Names: 

• The script reads an Excel file (Breast-Cancer-MRI-filepath_filename-mapping.xlsx) to 
map file paths to sequence names and SeriesInstanceUIDs. This mapping is crucial 
for identifying and organising the data. 

3. Reading and Processing DICOM Files: 
• For each case in the dataset, the script reads DICOM files, extracts metadata, and 

converts the images to the NIFTI format. It also saves the metadata for each sequence as 
a JSON file. 

4. Computing Additional Images: 
• The script computes subtraction images (sub.nii.gz) by subtracting pre-contrast images 

from post-contrast images. 
• It also resamples T1-weighted images to match the dimensions of the dynamic sequence 

images. 
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Crop and Pad the Data 

 
1. Function Definitions: 

• crop_breast_height: This function crops the height of the breast images to 256 pixels 
while trying to cover the breast area based on intensity localisation. 

• preprocess: This function performs the main preprocessing steps for each image in the 
dataset. 

2. Preprocessing Steps in preprocess Function: 
• Setting Target Spacing and Shape: The script sets the target spacing and shape for the 

images. 
• Reference Image Resampling: It resamples the 'pre.nii.gz' image to the target spacing. 
• Transformation Pipeline: A series of transformations is applied, including resampling to 

the reference image, cropping, or padding to the target shape, and converting to a 
canonical orientation. 

• Height Cropping: The script crops the height of the image to 256 pixels. 
• Splitting Image into Left and Right Sides: The image is split into left and right sides, each 

cropped accordingly. 
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SWARM LEARNING IMPLEMENTATION GUIDE 
 

Our swarm learning implementation cantered on co-training machine learning models for MRI data 

prediction across multiple physically distinct computers. This decentralised approach allowed each 

participating site to maintain proprietary data without direct sharing, fostering collaborative model 

training. The swarm learning network, featuring three nodes, engaged in model weight exchange at 

synchronisation events, occurring at defined intervals. Model weights were averaged at each event, 

enabling collaborative learning, with a weighted approach inspired by successful cancer research 

applications. Blockchain, specifically Ethereum, managed metadata for model synchronisation, 

ensuring transparency. Utilising Hewlett Packard Enterprise's framework, we integrated four key 

components: Swarm Learning process, Swarm Network process, identity management, and HPE 

license management, for an efficient and cohesive implementation of swarm learning principles. We 

provide a detailed description of our SL process, along with a small sample dataset, and instructions 

on how to reproduce our experiments using our code in https://github.com/KatherLab/swarm-learning-

hpe/tree/exp_duke_ comparison. 
 

The operational workflow of Swarm Learning encompasses three primary phases: Initialisation and 

Onboarding, Installation and Configuration, and Integration and Training. 

 

Initialisation and Onboarding: 
   Onboarding is an offline process where entities interested in Swarm-based ML collaborate to 

establish operational and legal requirements. This phase involves formulating agreements for sharing 

parameters, ensuring node visibility across organisations, and defining the common model to be 

trained. Configurable parameters, a synchronisation frequency, and, if applicable, a reward system are 

agreed upon during this phase. 

 

Installation and Configuration: 
   Following onboarding, consortium members download and install the Swarm platform on their 

nodes. This phase implements the finalised configuration of the Swarm Learning network. The 

platform is initiated, connecting nodes in the Swarm network, which overlays a blockchain network 

onto the underlying IP network. The boot-up sequence is organised, with sentinel nodes starting up 

first, followed by the remaining nodes. 

 

Integration and Training: 
   Swarm Learning provides user-friendly APIs for seamless integration with frameworks like PyTorch 

or Keras (TensorFlow). The model training process involves the following stages: 

https://github.com/KatherLab/swarm-learning-hpe/tree/exp_duke_comparison
https://github.com/KatherLab/swarm-learning-hpe/tree/exp_duke_comparison
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   - Enrolment: 

     Nodes enrol in the Swarm smart contract, recording essential attributes, including the URI, enabling 

other nodes to download their trained parameters. 

 

   - Local Model Training: 

     Nodes iteratively train their local models over multiple rounds (epochs), sharing parameter values 

with other nodes after each epoch. 

 

   - Parameter Sharing: 

     Nodes share parameters when a specified minimum threshold is reached. An elected leader 

oversees merging parameters from local training across all nodes after each epoch. 

 

   - Parameter Merging: 

     The leader combines parameter files using merge algorithms (mean, weighted mean, median), 

unifying parameter values from all nodes into a new file. 

 

   - Stopping Criterion Check: 

     Nodes evaluate the model using updated parameter values and communicate validation outcomes. 

If the stopping criterion is met, the Swarm Learning process concludes; otherwise, stages are repeated 

until criteria are fulfilled. 

 

   - Monetisation and Rewards: 

     If allowed, rewards reflecting each participant's contributions are computed and dispensed. The 

system state is assessed against the stopping criterion, repeating stages until criteria are met or 
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concluded. This comprehensive process underscores the decentralised and collaborative nature of 

Swarm Learning in machine learning model training. 

INTEGRATION WITH EXISTING WORKFLOW 
 

SL has the flexibility to convert any Python3-based ML program using Keras (with TensorFlow 2 

backend) or PyTorch into a Swarm Learning ML program with minimal adjustments to the model 

training code. Simply incorporate the SwarmCallback API object into the existing code and refer to the 

provided examples in the Swarm Learning package for guidance. The ML program can utilise any 

parameterised supervised learning model, whether it's fully trainable or partially trainable, such as in 

the case of transfer learning. The Swarm Learning framework accommodates a variety of model 

architectures to suit individual needs. 

 

To convert an ML program into a Swarm Learning ML program: 

 

Import SwarmCallback class from the Swarm library. 
 

from swarmlearning.tf import SwarmCallback 

 

SwarmCallback represents a custom callback class equipped with a range of functions strategically 

employed at different stages of the training process. Throughout the training phase, this callback, 

along with its set of functions, offers insights into internal states and model statistics to the Swarm 

Learning framework. Specifically, SwarmCallback executes operations unique to Swarm Learning, 

such as sharing parameters with all network peers at the conclusion of a synchronisation interval. 

On TensorFlow-based Keras platforms, SwarmCallback aligns with the Keras 

`tf.keras.callbacks.Callback` class. Keras automatically triggers the methods of this class at relevant 

stages during training. 

In the case of PyTorch, which lacks a built-in Callback class, users are required to invoke the methods 

of this class explicitly on PyTorch-based platforms. The subsequent section details these methods, and 

their application is exemplified in the MNIST sample program. 

 

Instantiate an object of the SwarmCallback class: 
from swarmlearning.tf import SwarmCallback #for TensorFlow 

from swarmlearning.pyt import SwarmCallback #for PyTorch 

 

# Create Swarm callback 

swarmCallback = SwarmCallback(syncFrequency=128, 

minPeers=min_peers, 

useAdaptiveSync=True, 

adsValData=(x_test, y_test), 

adsValBatchSize=8, 

swarmCallback.logger.setLevel(logging.DEBUG) 

 

Parameters: 

• syncFrequency: Specifies the number of batches of local training to be performed between two 

swarm sync rounds. If adaptive sync enabled, this is the frequency to be used at the start. This 

is a mandatory parameter. 

• minPeers: Specifies the minimum number of SL peers required during each synchronisation 

round for Swarm Learning to proceed further. This is a mandatory parameter. 
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• useAdaptiveSync: Modulate the next syncFrequency value post each synchronisation round 

based on performance on validation data. The default value is false. This is an optional 

parameter. 

• adsValData: Specifies the dataset for generating metrics for adaptive sync logic. It can be either 

an (x_val, y_val) tuple or a generator. This is an optional parameter for Swarm training. 

• adsValBatchSize: Specifies the batch size for adsValData if batch processing is required. This 

is used when useAdaptiveSync is turned ON. This is an optional parameter for Swarm training. 

• checkinModelOnTrainEnd: Specifies the merging behaviour of an SL node upon reaching the 

stopping criterion, indicating the completion of its local training, while awaiting the conclusion 

of training by all other peers. Throughout this waiting period, the SL node refrains from training 

the model with local data. The parameter determines the characteristics of the weights that 

this SL node contributes to the merging process and is optional. The permissible values for this 

parameter are: 

o inactive: The node abstains from contributing its weights to the merging process but 

actively participates as a non-contributing peer. It's important to note that specifying 

"inactive" for all nodes is an invalid configuration. 

o snapshot: The node consistently contributes the weights it possessed when reaching 

the stopping criterion and does not accept merged weights. DEFAULT 

o active: The node mimics an active training state (with no local model training) and 

contributes the current merged weights obtained from the Swarm merge. This setting 

allows the final model to potentially favour nodes that conclude their training at the end. 

• trainingContract: Training contract associated with this learning. It is a user-defined string. This 

is an optional parameter. Default value is defaultbb.cqdb.sml.hpe. 

• nodeWeightage: A number between 1–100 to indicate the relative importance of this node 

compared with others during the parameter merge process. This is an optional parameter. By 

default, all nodes are equal and have the same weight-age of one. 

• mlPlatform: Specifies ML platform. Allowed values are either TF, KERAS or PYTORCH. This is an 

optional parameter. If TF platform is used, the default value is KERAS. If PYTORCH platform is 

used, the default value is PYTORCH. 

• mergeMethod: Specifies what kind of merge method to be used in Swarm merge process. When 

SL node becomes leader, it reads this parameter and performs merge of intermediate trainable 

parameters (weights and biases). This is an optional parameter. Allowed values are as follows: 

o mean: Merges the model's trainable parameters using the weighted mean method. This 

is the default merge method. 

o coordmedian: Merges the model's trainable parameters using the weighted coordinate 

wise median method. 

o geomedian: Merges the model's trainable parameters using the weighted geometric 

median method. 

• logger: Provides information about Python logger. This is an optional parameter. 

SwarmCallback class invokes info, debug, and error methods of this logger for logging. If no 

logger is passed, then SwarmCallback class creates its own logger from basic python logger. If 

required, user can get hold of this logger instance to change the log level as follows: 

 

 import logging 

from swarmlearning.tf import SwarmCallback 

swCallback = SwarmCallback(syncFrequency=128, minPeers=3) 

swCallback.logger.setLevel(logging.DEBUG) 

 

 

 



 

Page 11 of 14 

Use the SwarmCallback object for training the model. 
• For Keras platforms: 

o Pass the object to the list of callbacks in Keras training code. The class methods are 

invoked automatically. 

o model.fit(..., callbacks = [swarm_callback]) 

o SwarmCallback can be included along with other callbacks also: 

o es_callback = EarlyStopping(...) 

o model.fit(..., callbacks = [es_callback, swarm_callback]) 

• For PyTorch platforms, you must invoke the class methods: 

o Call on_train_begin() before starting the model training: 

o swarmCallback.on_train_begin() 

o Call on_batch_end() after the end of each batch training: 

o swarmCallback.on_batch_end() 

o Call on_epoch_end() after the end of each epoch training: 

o swarmCallback.on_epoch_end(epoch) 

o Call on_train_end() after the end of the model training: 

o swarmCallback.on_train_end() 
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TECHINIQUE SELCETION FOR WEEKLY SUPERVISED LEARNING 

 

 

We can use various deep learning (DL) models selected through a thorough literature survey, 

encompassing radiology and technical publications. The chosen models include 2D-CNNs [5–8], 3D-

CNNs [9,10], multiple-instance learning (MIL) approaches, and vision transformer (ViT) models 

[11,12], all applied to pre-processed difference images. Here's a detailed breakdown: 

 

2D-CNNs: 
 

Architecture: Based on the 2D-ResNet50 architecture. 

Process: 3D MRI data is segmented into 32 slices, each with 256 x 256 pixels. 

Approach: Utilises weakly supervised learning to label slices based on volume. 

Prediction: Aggregates individual slice scores to generate volume-level predictions. 

3D-CNNs: 
Architectures Used: 3D-ResNet18, 3D-ResNet50, 3D-ResNet101, and 3D-DenseNet121. 

Advantage: Adapts 2D-CNN designs for 3D data, capturing volumetric and spatial information. 

MIL-based Methods: 

ResNet18 Model: Pre-trained on ImageNet for feature extraction. 

 

MIL Models: 
Att-MIL (Attention-based MIL): Employs a multilayer perceptron with an attention mechanism. 

ViT-MIL (Vision Transformer-based MIL): Utilises a transformer network with multi-headed self-

attention. 

ViT-LSTM-MIL: Combines Vision Transformer, LSTM, and MIL for improved classification on 2D slices. 

These methods represent a diverse set of approaches for breast MRI classification, each tailored to 

address specific challenges and nuances in the data. 
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FINAL IMPLEMENTATION 
 

In the intricate process of leveraging Swarm Learning for tumor prediction, the initial crucial phase 

involves meticulous preparation of the dataset. This entails thorough cleaning, formatting, and 

organising the data to meet the stringent requirements of the impending model. Subsequently, the 

Swarm Learning platform is meticulously set up, a task that encompasses the onboarding of multiple 

entities, the definition of operational and legal requirements, and the establishment of parameters for 

the decentralised system. With these foundational elements in place, the next pivotal step is the 

judicious selection of an appropriate machine learning method tailored to the unique characteristics 

of the problem at hand. Once this critical decision is made, the model training phase commences, 

enrolling nodes in the Swarm smart contract, and facilitating local training while synchronising 

parameters at designated intervals. With the trained model in hand, the focus shifts to deployment on 

a separate test dataset, allowing for a comprehensive assessment of its efficacy in predicting tumour 

presence. This intricate setup is a culmination of meticulous planning and execution, ensuring that 

each element is meticulously configured for optimal performance. Only after these meticulous 

preparations can the model be set in motion, ultimately yielding results that can be visualised and 

analysed to gauge the success of the Swarm Learning-based tumour prediction model. 

 

 

CONCLUSION 
 

This document describes how to train AI models with SL based on a tangible demonstration case of 

breast cancer tumour detection using MRI data. In conclusion, this report serves as a comprehensive 

guide for training AI models using Swarm Learning (SL) based on a tangible demonstration case. The 

step-by-step instructions provided cover the entire process, from initialisation and onboarding to 

installation, configuration, and integration. The practical application of SL in a real-world scenario is 

highlighted, emphasising the advantages of decentralised training without the need for centralised 

data sharing. The report underscores the flexibility of SL in accommodating multiple nodes, allowing 

for dynamic onboarding and dropout of participating institutions. Additional detailed information and 

comprehensive results about the presented topic can be found in our research paper titled 'Swarm 

Learning with Weak Supervision Enables Automatic Breast Cancer Detection in Magnetic Resonance 

Imaging.' Currently under revision for the Nature Communication journal, this paper delves deeper into 

the intricacies of our work and offers a more extensive exploration of the use case for training AI 

models with magnetic resonance imaging (MRI) data. It is worth noting that all collaborators 

associated with the ODELIA project actively contributed to the scientific endeavours outlined in this 

paper. Their collective involvement underscores the collaborative nature of this research, shedding 

light on the collaborative efforts that have shaped the insights and findings presented in the 

publication. Overall, this report equips practitioners with the knowledge and practical insights needed 

to implement SL for training AI models, fostering advancements in machine learning while preserving 

data integrity and privacy. 
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